Researchers Continue Work With Rust-Resistant Soybean Germplasm

Researchers Continue Work With Rust-Resistant Soybean Germplasm

Several resistant varieties have been identified. More work must be done to create a high-yielding, resistant variety.

When soybean rust first appeared in the United States in late 2004, many producers feared devastating yield losses similar to losses experienced in other parts of the world.

In response to this threat, researchers have been evaluating USDA soybean germplasm accessions for resistance to this fungus, and a recent report in Crop Science identifies some of these resistant sources.

"Our goal was to determine which of the soybean germplasm accessions were resistant in the United States and whether they were resistant throughout the southern United States," explains David Walker, USDA-ARS scientist and assistant professor in the University of Illinois Department of Crop Sciences.

According to Walker, this fungus reproduces more rapidly when temperatures are moderate and where there's abundant rainfall and heavy dew, causing spores to germinate and infect plants. The spores can move by wind and travel hundreds of miles to start a new infection, making it hard to contain.

This concern prompted field evaluations of 576 accessions from the USDA Soybean Germplasm Collection for resistance to soybean rust at seven locations in the southern U.S. between 2006 and 2010. Accessions were rated for disease severity in all year-location environments, and for disease incidence, fungal sporulation, lesion type, and/or uredinia density in certain environments. The Crop Science article reports the results of the 2006-2008 tests.

"While none of the accessions were immune in all environments, 64 were resistant in two or more locations each year that they were tested," Walker notes. "In addition, some appeared to be more resistant in certain environments than in others."

The researchers also discovered a subset of soybean germplasm accessions that were resistant in South America or Africa (where soybean rust has the potential to cause up to 80 percent yield loss in some years) were resistant in the southern U.S.

"The Rpp1 and Rpp3 resistance genes were found to be more effective in the United States, whereas the Rpp2 and Rpp4 genes were found to be more effective in South America," Walker adds. "Nearly all of the soybean accessions that were found to be resistant to soybean rust in the United States were originally collected from southern Japan, northern Vietnam, or the island of Java (Indonesia)."

These discoveries have allowed soybean breeders to develop improved breeding lines that combine the resistance of Asian germplasm accessions with the higher yields and important agronomic traits of North American cultivars, Walker adds. These lines are now being tested in the U.S. but are not in the public sector yet.

"It's difficult to transfer useful genes from Asian soybean types because the useful genes are often genetically linked to genes that cause problems with yield such as shattering, lodging and other undesirable traits," he notes. "It takes time to transfer a piece of DNA that has a useful gene into a breeding line or cultivar adapted to the United States, then breed long enough to get rid of the undesirable genes that are linked to the useful one. We are trying to isolate the resistance genes without the undesirable genes from the same chromosome."

TAGS: USDA
Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish